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Motivation

» Majority of HPC algorithms for scientific applications were
introduced between 1970s and 1990s
» They were designed for and tested on up to hundreds (few
thousands at most) of processors.
» In June 1995, the number of cores in the top 10
supercomputers ranged from 42 to 3680 (see
http://www.top500.0rg/)
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Motivation

» Majority of HPC algorithms for scientific applications were
introduced between 1970s and 1990s

» They were designed for and tested on up to hundreds (few
thousands at most) of processors.

» In June 1995, the number of cores in the top 10
supercomputers ranged from 42 to 3680 (see
http://www.top500.0rg/)

» Nowadays, in June 2013, this number ranges from 147,456
to 3,120,000
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Motivation

The increasing scale of the HPC platforms creates new
research questions which needs to be solved:

Scalability
» Communication cost

v

v

Energy efficiency
> etc.
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Introduction

We focus on the communication cost of scientific applications
on large-scale distributed memory platforms.

» Example application: Parallel Matrix Multiplication.
» Why Matrix Multiplication?
» Matrix multiplication is important in its own rights as a
computational kernel of many scientific applications.
» Itis a popular representative for other scientific applications
» If an optimization method works well for matrix
multiplication, it will also work well for many other relative
scientific applications
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Introduction

» Example algorithm:
» SUMMA - Scalable Universal Matrix Multiplication
Algorithm.
» Introduced by Robert A. van de Geijn and Jerrell Watts.
University of Texas at Austin, 1995.
» Implemented in ScaLAPACK.
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Number of steps: g (nxn - matrices, b - block size, v/Px~/P - processors grid,
P = 36)

The pivot column A2, of -2

VP

n

x b blocks of matrix A is broadcast horizontally.

The pivot row Bb of bx blocks of matrix B is broadcast vertically.

NG
Then, each \F \F block ¢;; of matrix C is updated, ¢; = ¢jj + ajk x by;.
Size of data broadcast vertically and horizontally in each step: 2# x b

9/38



Problem Outline Motivation and Introduction
Previous Work: SUMMA
Our Work: HSUMMA

Outline

Problem Outline

Our Work: HSUMMA

10/38



Problem Outline Motivation and Introduction
Previous Work: SUMMA
Our Work: HSUMMA

Our Contribution

» We introduce application level hierarchical optimization of
SUMMA

» Hierarchical SUMMA (HSUMMA) is platform independent
optimization of SUMMA

» We theoretically and experimentally show that HSUMMA
reduces the communication cost of SUMMA
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SUMMA vs HSUMMA. Arrangement of Processors

E

SUMMA
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SUMMA vs HSUMMA. Arrangement of Processors
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SUMMA
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Horizontal Communications Between Groups in
HSUMMA

' I » P - number of processors (P = 36)
» G - number of groups (G = 9)

» /P x +/P - processors grid
» /G x v/G - grid of processor groups

» M - block size between groups

> n/M - number of steps

» Size of data broadcast

i i . nxM
horizontally in each step: v

The pivot column AY, of # x M blocks of matrix A is broadcast horizontally
between groups
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Horizontal Communications Inside Groups in
HSUMMA

A
;.

Upon receipt of the pivot column data from the other groups, the local pivot
column A, (b<M) of 75 xb blocks of matrix A is broadcast horizontally

inside each group

A

Bl [P

5 VP
> V6 < f grid of processors inside groups
» b— block size inside one group

» M/b— steps inside one group

» n/M- steps between groups

» Size of data broadcast
Pys horizontally in each step: %

-ﬁ

>

14/38



Problem Outline Motivation and Introduction
Previous Work: SUMMA
Our Work: HSUMMA

Vertical Communications Between Groups in
HSUMMA

m\ » P - number of processors (P = 36)

H » G - number of groups (G = 9)

» /P x /P - processors grid

Pos VG x /G - grid of processor groups
» M - block size between groups

Pas
n/M - number of steps

> Size_ of dqta broadcast "
vertically in each step: ”\jﬁ

!

] |2]2]
[~ >~
v

v

The pivot row B of Mx # blocks of matrix B is broadcast vertically
between groups
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Vertical Communications Inside Groups in HSUMMA

Bf.

@‘

\‘? \F grid of processors

b— block size inside one group
Bff’ 2 2 @ ‘ M/b— steps inside one group
n/M— steps between groups

Size of data broadcast
B,‘(’r»@ @ @ ‘ vertically in each step: 22

v

v

v

v

v

Upon receipt of the pivot row data from the other groups, the local pivot row
B, of bx =, (b<M) blocks of matrix B is broadcast vertically inside each
group
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Communication Model to Analyse SUMMA and
HSUMMA

Time of sending of a message of size m between two
processors:
a+mp (1)
Here,
» « -latency
» [ -reciprocal bandwith
» M -message size
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General Broadcast Model to Analyse SUMMA and
HSUMMA

We use a general broadcast model for all homogeneous
broadcast algorithms such as

» flat

v

binary

binomial

linear

scatter-allgather broadcast

v

v

v

Theast(m, p) = L(p)xa + mx W(p)x 3 (2)
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General Broadcast Model

Tocast(m, p) = L(p)x o+ mxW(p)x

Assumptions:
» L(1)=0and W(1)=0
» L(p) and W(p) are monotonic and differentiable functions
in the interval (1, p),

» their first derivatives are constants or monotonic in the
interval (1, p)
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SUMMA and HSUMMA with General Broadcast Model

> SUMMA:

Ts(n,p) =2 (Z xL(vp)a + % x W(\/ﬁ)5> ®)
> HSUMMA:
Ths(n, p, G) = Ths,(n, p, G) + Ths, (N, p, G) Q)

Here G € [1, p] and we take b = M for simplicity and
> Tys, is the latency cost:

Ths,(n,p, G) = 2£>< (L(\/@) L

))e 5)

Sls

> Ths, is the bandwidth cost:

n? VP
Ths, (n,p,G) =2—x | W G+W—) 6
5, (n.p. G) = 27 (WG + W(YE)) 5 ©
SUMMA is a special case of HSUMMA when G =1 or G = p.
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Optimal Number of Groups in HSUMMA with General
Broadcast Model

Derivative of the communication cost function of HSUMMA with general
broadcast model:
OTus

2
G = B><L1(p, G)a+ﬁ><W1(Pa G)B (7)

Here, Li(p, G) and W;(p, G) are defined as follows:

- 8L(\/G) 1 _BL(f) (9
OW( B
Wi(p, G) = (”g(\fﬂ = a(f)xeé> )

If G = V/Pthen Li(p, G) = 0 and W;(p, G) = 0. Thus, 2ts = 0

21/38



Problem Outline Motivation and Introduction
Previous Work: SUMMA
Our Work: HSUMMA

Optimal Number of Groups in HSUMMA with General
Broadcast Model

» HSUMMA has extremumin G € (1, P)

» G = /P is the extremum point.
» Depending on « and §:
» This extremum can be minimum which means HSUMMA
always outperforms SUMMA.
» Or maximum which means HSUMMA has the same
performance as SUMMA.
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Theoretical Prediction by Using Scatter-Allgather
Broadcast

Algorithm | Comp. Cost Latency Factor Bandwidth Factor
inside groups \ between groups inside groups \ between groups
SUMMA Es (logy (p) +2(vB— 1)) x2 4(17%) %
7 /b /G P
HSUMMA ar (Iogz(%)+2(;—%—1>)xg (Iogz(G)+2<\/@—1>)xﬁ 4(1 %)xﬁ 4(1—%)x‘/p
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Optimal Number of Groups with Scatter-Allgather
Broadcast

OThs, _ G—yp_[na _n?
8GG@X< 2—xp (10)

If G= \/pthen ”Sv =
> |If % > 2%’ then G = /p is the minimum of Tys.

> |If % < 2%’ then G = /p is the maximum of Tyg. In this case the function gets
its minimum at either G=1o0or G =p.
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Optimal Number of Groups with Scatter-Allgather
Broadcast

Algorithm Comp. Cost Latency Factor Bandwidth Factor

inside groups \ between groups inside groups \ between groups
SUMMA E (log, (p) +2(y/P — 1)) x2 4(%#) <2

an 2 Vb VG y 2 1 ”

HSUMMA o (Iogz(5)+2<$—‘ﬁ3—1))xg (Iogz(G)+2(\/é—1))><ﬂ 4(‘*%) g 4(1—ﬁ)xﬁ
HSUMMA(G = /B, b= M) u (logy (p) + 4 (¢/B—1)) x2 8(1—%@>x%
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Theoretical Prediction on Future Exascale Platforms
by Using Scatter-Allgather Broadcast

Total flop rate (v): 1E18 flops
Latency: 500 ns,

Bandwidth: 100 GB/s

Problem size: n = 222,
Number of processors: p = 220
Block size: b = M = 256

Execution Time (Sec)
=
vVVvyVvYyVvYyYYyy

2—2 2‘2 és 2‘10 2‘14 2;5 222
Groups

—e— HSUMMA ——SUMMA

Prediction of SUMMA and HSUMMA on Exascale.
(The parameters were taken from: Report on Exascale Architecture. IESP Meeting.
April 12, 2012)
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Experimental platforms

» The experiments were carried out on Graphene cluster of
Nancy site of Grid5000 platform,

» On 8, 16, 32, 64 and 128 cores and

» On IBM BlueGene on 1024, 2048, 4096, 8192 and 16384
cores
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Summa vs HSUMMA on Grid5000 with MPICH

30

20

Execution Time(Sec)

1 2 4 8 16 32 64 128
Number of Groups

HSUMMA and SUMMA on Grid5000 with MPICH-2.

b=M=64,n=8192 and p = 128.
7.75 times reduction of the execution time.
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Summa vs HSUMMA on Grid5000 with MPICH

Execution Time(Sec)

R R S Y N
1 2 4 8 16 32 64 128
Number of Groups

HSUMMA and SUMMA on Grid5000 with MPICH-2.

b=M=256,n=8192 and p = 128.
2.96 times reduction of the execution time.
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Summa vs HSUMMA on Grid5000 with OpenMPI on
Ethernet

Execution Time(Sec)

1 2 4 8 16 32 64 128
Number of Groups

HSUMMA and SUMMA on Grid5000 with OpenMPI on

Ethernet. b= M =256, n = 8192 and p = 128.
16.8 percent reduction of the execution time.
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Summa vs HSUMMA on Grid5000 with OpenMPI on
Infiniband

04}

Execution Time(Sec)

0.2

R S Y N
1 2 4 8 16 32 64 128
Number of Groups

HSUMMA and SUMMA on Grid5000 with OpenMPI on

Infiniband. b = M = 256, n=8192 and p = 128.
24 percent reduction of the execution time.
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Experiments

Summa vs HSUMMA on BlueGene

T
50 -

a0

30 -

Time (Sec)

T e e o
Number of groups

——  HSUMMA execution time ——  SUMMA execution time

—e—HSUMMA communication time — SUMMA communication time

SUMMA and HSUMMA on BG/P. Execution and communication
time. b= M = 256, n = 65536 and p = 16384. 2.08 times
reduction of the execution time. 5.89 times reduction of the
communication time.
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SUMMA and HSUMMA Communication Time
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_ -
§ s e
‘a-; 30 - _—
£ -
£
c
S 20
®
Q
c
E 10 |- i
£
[}
[&]
025 12 P o

Number of cores

‘+ HSUMMA communication time —=— SUMMA communication time ‘

SUMMA and HSUMMA on BG/P. Communication time.
b= M =256 and n = 65536
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Summary

Improvement over SUMMA:

» Hierarchical SUMMA has theoretically better
communication time and thus less execution time than
SUMMA

2.08 times less communication time on 2048 cores

v

5.89 times less communication time on 16384 cores
1.2 times less overall execution time on 2048 cores
2.36 times less overall execution time on 16384 cores

v

v

v
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